
Appendix BB

Solution of the Schrödinger Equation in
Spherical Coordinates

SEPARATION OF THE SCHRÖDINGER EQUATION

The Schrödinger equation for an electron with mass m moving about a nucleus with mass M and charge eZ can be written
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where the reduced mass μ is defined by the equation

μ = mM

m+M
. (BB.2)

Using the expression for the Laplacian operator in spherical coordinates given in Appendix AA, the Scrödinger equation
can be written
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The above equation can be solved by the method of separation of variables by writing the wave function as a product of
a functions of the radial and angular coordinates

ψ(r, θ ,φ) = R(r)Y(θ ,φ).

Substituting the product function into Eq. (BB.3) and dividing by −�
2/2μr2 times the product function, we obtain
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Since the left-hand side of the above equation depends only on r and the right-hand side depends both on θ and φ, both
sides must be equal to a constant that we call λ. The resulting radial equation can be written
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and the angular equation is
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Using Eq. (AA.10), we may identify the second of these two last equations as the eigenvalue equation of the angular
momentum operator l2 with eigenvalue �2λ. We shall use a purely algebraic line of argument in Appendix CC to show that
the eigenvalues of the orbital angular momentum operator l2 are �

2 l(l+ 1), where l is the angular momentum quantum
number. We may thus identify the separation constant λ as being l(l+ 1) and write the radial equation

e5



e6 Appendix| BB Solution of the Schrödinger Equation in Spherical Coordinates

1

r2
d

dr

(
r2
dR

dr

)
+

[
2μ

�2

(
E + 1

4πε0

Ze2

r

)
− l(l + 1)

r2

]
R = 0, (BB.7)

We consider now more fully the radial equation. Evaluating the derivatives of the first term in the equation, we obtain
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The above equation can be simplified by introducing the change of variables

ρ = αr, (BB.9)

where α is a constant yet to be specified. The equation defining the change of variables can be written

r = α−1ρ. (BB.10)

The derivatives of the radial function R can then be expressed in terms of the new variable ρ by using the chain rule.
We have
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Similarly, the second derivative can be written
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Substituting Eqs. (BB.10)-(BB.12) into Eq. (BB.13) and dividing the resulting equation by α2, we obtain
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To simplify this last equation, we now make the following choice of α

α2 = 8μ|E|
�2

, (BB.14)

and we define a new parameter ν by the equation

ν = 2μZe2

�24πε0α
, (BB.15)

The radial equation then becomes
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where the new variable ρ is related to the radial distance r by Eq. (BB.9).
In this appendix we shall solve the radial equation (BB.7) using the power series method. We first note that the first two

terms in the equation and the last term depend upon the −2 power of ρ, while the third term in the equation depends upon
the −1 power of ρ and the forth term depends upon the 0 power. Since the equation depends upon more than two powers
of ρ, it cannot be solved directly by the power series method. To overcome this difficulty, we examine the behavior of the
equation for large values of r for which the fourth term in the equation dominates over the third and last terms. The function
e−ρ/2, which is everywhere finite, is a solution of the radial equation for large r. This suggests we look for an exact solution
of Eq. (BB.16) of the form

R(ρ) = F(ρ)e−ρ/2, (BB.17)

where F(ρ) is a function of ρ. We shall substitute this representation of R(ρ) into Eq. (BB.7) and in this way derive an
equation for F(ρ). Using Eq. (BB.17), the first and second derivatives of R(ρ) can be written
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Substituting Eqs. (BB.17) and (BB.18) into Eq. (BB.16) leads to the equation
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We note that the first, second, and last terms of the new radial equation depend upon the−2 power of ρ, while the remaining
two terms in the equation depend upon the −1 power of ρ. Since Eq. (BB.7) only involves two powers of ρ, it is amendable
to a power series solution.

We now look for a solution for F(ρ) of the form

F(ρ) = ρsL(ρ), (BB.20)

where the function L(ρ) can be expressed as a power series

L(ρ) =
∞∑
k=0

ak ρ
k. (BB.21)

We shall suppose that the coefficient a0 in the expansion of L(ρ) is not equal to zero and that the function ρs gives the
dependence of the function F(ρ) near the origin. The requirement that F(ρ) be finite can be satisfied if s has integer values
equal or greater than zero. Substituting Eq. (BB.20) into Eq. (BB.19) gives the following equation for L
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Substituting ρ = 0 in the above equation, leads to the condition

s(s+ 1)− l(l + 1) = 0.

This quadratic equation has two roots: s = l and s = −(l+ 1). Only the root s = l is consistent with the boundary condition
that the radial function R(ρ) be finite for ρ = 0. The equation for L then becomes
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Notice that the first and second terms of the above equation depend upon the −1 power of ρ, while the remaining terms in
the equation depend upon the 0 power of ρ.

To obtains a power seres solution of Eq. (BB.22), we take the first two derivatives of Eq. (BB.21) to obtain
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We substitute these expressions for L(ρ) and its derivatives into Eq. (BB.22) to obtain
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Notice that the first and second summations involve ρk−1, while the third and forth sums involve ρk. Because of the factor
k − 1 in the first sum, the first summation can be extended to k = 1 and because of the factor k in the third sum, the third
summation can be extended to k = 0, and the equation may be written
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∞∑
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The first summation in the above equation has the variable ρ is raised to the power k − 1, while in the second summation
has ρ raised to the power k. In order to bring these different contribution together so that they contain terms corresponding
to the same power of ρ, we make the following substitution in the first summation

k = k′ + 1, (BB.23)

and we simplify the terms within the two summations to obtain
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As with a change of variables for a problem involving integrals, the lower limit of the first summation is obtained by
substituting the value k = 1 into Eq. (BB.23) defining the change of variables. We now replace the dummy variable k′ with
k in the first summation and draw all of the terms together within a single summation to obtain
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ρk = 0.

This equation can hold for all values of y only if the coefficient of every power of ρ is equal to zero. This leads to the
following recursion formula

ak+1 = k + l+ 1 − ν

(k + 1)(k + 2l+ 1)
ak. (BB.24)

The recursion formula gives a1, a2, a3, . . . in terms of a0. We may thus regard L(ρ) to be defined in terms of the two constant
a0. We must examine, however, the behavior of L(ρ) as y approaches infinity. Since the behavior of H(y) for large values of
y will depend upon the terms far out in the power series, we consider the recursion formula (BB.24) for large values of k.
This gives

ak+1

ak
→ k

k2
= 1

k
.

We now compare this result with the Taylor series expansion of the function eρ

eρ = 1 + ρ + 1

2!
ρ2 + · · · + 1

k!
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ρk+1 + · · · .

The ratio of the coefficients of this series for large values of k is

1/(k + 1)!

1/k!
= k!

(k + 1)!
= 1
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k
.

The ratio of successive terms for these two series is the same for large values of k. This means that the power series
representation of L(ρ) has the same dependence upon ρ for large values of ρ as the function eρ . Recall now that the radial
function R(ρ) is related to F(ρ) by Eq. (BB.17), and F(ρ) is related to L(ρ) by Eq. (BB.20) with s = l. Setting L(ρ) = eρ

leads to the following behavior of the radial function for large ρ

R(ρ) = e−ρ/2ρleρ = ρleρ/2 as y → ∞.

The radial function we have obtained from the series expansion thus becomes infinite as y → ∞, which is unacceptable.
There is only one way of avoiding this consequence and that is to terminate the infinite series. The series can be terminated
by letting ν be equal to an integer n, such that

ν = n = n′ + l+ 1. (BB.25)

The recursion formula (BB.24) then implies that the coefficient an+1 is equal to zero, and the function L(ρ) will be a
polynomial of degree n. Equations (BB.17) and (BB.20) with s = l then implies that the radial function R(ρ) is equal
to a polynomial times the function e−ρ/2, which means that R approaches zero as ρ → ∞. Setting ν = n and solving
Eqs. (BB.14) and (BB.15) for the energy, we obtain
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|E| = μZ2e4

2(4πε0)2�2
1

n2
.

The energy of the nth bound state of a hydrogen-like ion with nuclear charge Ze is

En = − μZ2e4

2(4πε0)2�2
1

n2
. (BB.26)

Using the reduced mass μ for the electron mass takes into account the fact that the finite mass of the nucleus. For the
hydrogen atom with Z = 1 and with the reduced mass μ equal to m, Eq. (BB.26) reduces the expression for energy En for
the hydrogen atom in Chapter 1.

The polynomials L(ρ) may be identified as associated Languere polynomials Lpq which satisfy the equation

ρ
d2Lpq
dρ2

+ [
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] dLpq
dρ

+ (q− p) Lpq = 0. (BB.27)

Equating the coefficients in Eqs. (BB.22) and (BB.27), we see that p = 2l+ 1 and q = n+ l. The appropriate polynomials
are given by the equation

L2l+1
n+l (ρ) =
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. (BB.28)

The normalized radial wave functions for a hydrogen-like ion can be written

Rnl(r) = −Anle−ρ/2ρlL2l+1
n+l (ρ) (BB.29)

with the normalization coefficients given by the equation
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, (BB.30)

where
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The first three radial functions, which can be found using Eqs. (BB.28) and (BB.29), are
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